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1. INTRODUCTION -

In classical elastoplasticity (Hill 1950; Malvern 1969), it is customary to assume the existence of a
plastic potential function in stress space, which is usually taken to be the yield function. Consistent with
this assumption is the associated flow rule, which specifies that each component of plastic natural strain
increment is proportional to the partial derivative of the potential function with respect to the
corresponding stress component. For materials that work harden, the effect of inelastic straining on the
"size" of the yield function must be considered. One method of accomplishing this is to introduce the
concept of a-universal plastic stress-strain curve that relates two scalar quantities: an "effective” stress and
an accumulation of "effective” plastic strain increments (defined in sequel). This concept gives good
agreement with physical experiments for proportional loading, but less satisfactory predictions for
combined stresses deviating significantly from proportional loading. Nevertheless, this concept for
modeling work hardening is widely used, both in analysis and in computational methodology.

An example of a universal stress-strain curve is the popular Johnson-Cook (1983) strength model,
particularized to the rate-independent, isothermal case.* While the parameters for this model were derived
by fitting experimental data, it will be shown that such a fit can only be satisfactory for a limited range
of finite strains. An alternate approach is to provide the universal stress-strain curve as a discrete set of
data points over as wide a range of effective plastic strains as desired and to use an interpolation procedure

for intermediate values. This report will elaborate on the latter altemnative and certain refinements.

2. DISCRETE PAIRS CONSTITUTIVE INPUT

Computer programs developed at Lawrence Livermore National Laboratory have provided options to
input constitutive data as coordinate pairs of points on an effective stress vs. effective plastic strain curve.
Specifically, these options apply to Material Types 10 and 24 of DYNA3D (Hallquist 1988) and Material
Types 3 and 24 of NIKE3D (Hallquist 1984). An illustration of this form of input is shown in Figure 1,
where experimentally determined values (Weerasooriya and Swanson 1991) for annealed OFHC copper
are displayed as asterisks. The computer programs then calculate values of effective stress for intermediate

values of the accumulated effective plastic strain by linear interpolation.

* The author believes that any rate-ftemperature-dependant constitutive model should provide agreement with quasi-static
experimental data when so particularized.
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Figure 1. Effective stress vs. effective plastic strain curves.

Figure 1 also shows a corresponding curve for the Johnson-Cook model, based on their published
parameters for OFHC copper. The differences between the two curves for small to moderate effective
plastic strains are not regarded as significant, since there may have been differences in heat treatments
between the two sets of experiments. However, the Johnson-Cook model, which uses a single power law
term, cannot represent the stress saturation that is observed physically. The same limitation also applies
to the Zerilli-Armstrong (1987) model.

The discrete point representation of constitutive data can also give rise to undesired effects. When
faced with a limited number of input points (16 for DYNA3D, 8 for NIKE3D), one would pick points
from available experimental data, not necessarily at uniform increments of effective plastic strain, which
appear to include the essential features of these data. If the experimental data are known to represent a
smoothly continuous phenomenon, the first (and possibly the second) differences of the selected input

points should be checked for proper smoothness.




Another difficulty can arise, at least with the computational procedure for stress incrementation
employed by the DYNA/NIKE codes. This is illustrated in Figure 2, which was obtained from an
NIKE3D computation for the linearly increasing twist of a tube, using the copper data from Figure 1. The
large "spike" that is observed at 0.1 s occurred when the computed effective plastic strain exceeded one
of the input values (where ﬂlere is a slope discontinuity). The problem is that the constitutive subroutine
uses the previous slope of the yield function to evaluate the new yield stress and is not aware of the slope
change until the next time step. In the case of NIKE3D, large time increments can be employed, which
accentuates the obvious discrepancy.

T T T ¥ T i ] )
15000 +-
1100
Vot
- ~
// "stradd!e"-based solution
- 4
418
—_ Q.
2 - s
2 2
g 10000 + ﬁ:"
& I 160 &
s oo
< L <
E g
& X &
> - 40 3
< 5000t g
- - 20
o 1 : 1 i 1 i L : L o
0 0.1 0.2 0.3 04 0.5
TIME (s)

Figure 2. "Before and After" stress-time solution.

For the DYNA3D code, where the time increment is constrained to be small for numerical stability,
the "spike" also appears (perhaps with a smaller amplitude), but is followed by an oscillatory response that
does not rapidly die out. This behavior has been shown to be associated with the occurrence of spurious

negative plastic work.




The foregoing phenomenon can be avoided by use of a special algorithm developed by the author that

is invoked whenever the computed effective plastic strain reaches one of the input data values.
3. THE "STRADDLE" ALGORITHM

The discussion of this algorithm refers to the manner in which it was implemented in the DYNA3D
code for the solid hexahedron element; however, for other applications, the procedure is essentially the
same. The notation employed is defined in the Nomenclature section of this report.

Subroutine F3DM10 takes the stress components from the previous cycle and a new set of strain

increments and calculates a set of trial deviatoric stress components on the basis of an elastic stress
change. It recalls the previous effective plastic strain sJP and calls the interpolation subroutine YIELDS
to reconstruct the current yield stress ch (see Figure 3). The trial stresses are used to calculate the
von Mises effective (trial) stress ol. Ifol < cJ-Y, the stress change was elastic and the trial deviatoric

stresses are accepted as valid. Otherwise, the stress change is plastic and the program calculates an

incremental effective plastic strain (scalar) using

oT - 6F :
(AP)* = 3 . )
3G + Hk

In the original version, of F3DM10 a new yield stress is determined using

(65)* = 6 + Hy(AeP)* @

It is this procedure that results in a stress overshoot when eJ? and EJP + AeP straddle a point such as

€, ,1 on the yield curve.
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Figure 3. Geometry of the straddle analysis.
In the revised version of F3DM10, the new trial effective plastic strain
(e, )T = € + APy’ 3)

is calculated and compared to € ,,. If (efﬂ)T > €, 1 the analysis branches to the straddle algorithm
to deal with this special case. It is desired to determine a AeP and an intermediate slope H, that will

result in a value of 0;’;1 which is consistent with the input data. The following conditions must be

satisfied:
e, = € + AP @)
T Y
G - O,
AP = ) 6))
3G + H,
oY oY
.1~ G
H, = __J;f___;_ ©)
€jv1 ~
Y )

. P =
Cj+1 = Oks1 Hk+1(ej+l - £k+1)




These simultaneous equations may be solved algebraically to yield -

T Y

®
€
and
o’ -0 - C
Ae?P = ¢)]
3G + Hp,,;
where
— Y -
Cy =041 - 05 - Hk+1(5k+1 - EJP) (10)

Values of e}’ , and c;il may then be obtained by use of equations (4) and (7). Certain tests to verify

+
P siae - P - .
that €;,, falls within the range € ,; < €;,; < €y, are required.

Following these calculations, the normal flow of this subroutine is rejoined and the stress components

are scaled back (radial return method [Krieg and Key 1976]) so that the new total stresses will lie on the
enlarged yield surface.

4. IMPLEMENTATION OF THE ALGORITHM IN COMPUTER CODES

Although the straddle algorithm was formulated for use with the solid element in DYNA3D, it is also
directly applicable for the NIKE3D solid element, as well as for the elements in the 2-D versions of these
codes, wherever the yield function is introduced as discrete points. The 3-D programs also feature beam
and shell elements for which, for certain options, discrete yield data are accepted.

In DYNA3D, both the Hughes-Liu (1981) and Belytschko-Tsay (1981, 1984) shells have this feature
and there is a choice between iterative and noniterative plane stress plasticity (Hallquist and Whirley
1989). In NIKE3D, the Hughes-Liu beam and shell formulations both provide for discrete yield data and
both require iterative stress evaluation to satisfy the requirement that the stress component normal to the




lamina system be zero. This iteration process complicates the introduction of the straddle algorithm, but
it has been successfully incorporated for the Hughes-Liu shell in subroutine s3mns. In fact, the dashed
line solution in Figure 2 resulted from a NIKE3D calculation after this subroutine was modified.

To daté, the straddle algorithm has only been incorporated in those portions of the DYNA and NIKE
codes where a need has arisen. As an example, the inclusion of this algorithm in DYNA3D Material
Model 10 is listed in the appendix.

5. CONCLUDING REMARKS

The straddle algorithm was developed to cope with nonphysical "spikes" and oscillations observed in
solutions obtained using the Lagrangian hydrocodes NIKE3D and DYNA?3D, in conjunction with discrete
yield function input data. In many applications, these perturbations may be only a minor nuisance in the
graphical output. However, when tracking material response to transient loading in conjunction with a
material failure criterion, the decision as to whether survivability or failure will result may be altered by

the presence of spurious spikes.

Consequently, it is argued that incorporation of the algorithm is an inexpensive means of avoiding
unpleasant surprises (since the number of branches to the algorithm at each integration point cannot exceed

the number of input data points minus one regardless of the number of cycles computed).
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The changes made to DYNA3D to incorporate the straddle algorithm in the following two subroutines

are indicated in bold lower case letters.

SUBROUTINE F3DM10 (CM)
COMMON/BK02/IBURN,DT1,DT2, ISDO

COMMON/AUX2/D1(128) ,D2(128),D3(128),D4(128),D5(128),D6(128),
1 WZZDT(128),WYYDT (128),WXXDT(128),EINC(128)
COMMON/AUX11/P0(128)

COMMON/AUX14/
&SIGN1 (128),SIGN2(128),SIGN3(128),SIGN4(128),
&SIGN5(128),SIGN6(128),
&EPX1(128) ,EPX2(128),EPX3(128),EPX4(128),EPX5(128) ,AUX(128,5)
COMMON/AUX18/DD (128) ,DF (128)

COMMON/AUX19/SP,BFAC(128) ,DR1V(128),DR2V(128) ,W1
COMMON/AUX20/
& AJ2(128),SJ2(128),SCALE(128),FJL(128),CC(128),P (128),

& POLD(128),DAVG(128),FJK(128),SPECEN(128) ,AK(128),AKT (128),
& YWH(128)
COMMON/AUX33/1X1(128),IX2(128),IX3(128),IX4(128),1IX5(128),
1 IX6(128),IX7(128),IX8(128),MXT(128),NMEL
COMMON/AUX35/RHOA (128) , CXXA (128)

COMMON/AUX36/LFT, LLT

COMMON/EOSD/PC(128) , SHRM (128)

logical plastic(128)

common/state/plastic

DIMENSION CM(1),il(128)

DATA THIRD/.3333333333333/

MX=48* (MXT (LFT) ~1)

SP=0.0

G=CM (MX+1)

QH=CM (MX+3)

QS=CM (MX+2)

A1=CM (MX+5)

A2=CM (MX+6)

ISPALL=CM (MX+7)~-1.

NPT=CM (MX+16)

G2=2.*DT1*G

DO 10 I=LFT,LLT

13




10 DAVG(I)=-THIRD* (D1 (I)+D2(I)+D3(I)) -
DO 20 I=LFT,LLT
SHRM(I)=G
AKT (I)=QH
PC(I)=EPX5(I)
20 AK(I)=QS+QH*EPX1(I)+(A1+A2*PO(I))*MAX(0.,PO(I))
DO 30 I=LFT,LLT
SIGN1 (I)=SIGN1(I)+PO(I)+G2*(D1(I)+DAVG(I))
SIGN2 (I)=SIGN2(I)+PO(I)+G2* (D2(I)+DAVG(I))
SIGN3 (I)=SIGN3(I)+PO(I)+G2*(D3(I)+DAVG(I))
SIGN4 (I)=SIGN4 (I)+.50%G2*D4(I)
SIGNS5 (I)=SIGN5(I)+.50*G2*D5 (1)
30 SIGN6 (I)=SIGN6(I)+.50*G2*D6(I)
IF (ISPALL.NE.2) GO TO 80
DO 40 I=LFT,LLT
40 DAVG(I)=PO(I)-EPX5(I)
DO 50 I=LFT,LLT
50 SCALE(I)=.50*(1.+SIGN(1.,DAVG(TI)))
DO 60 I=LFT,LLT
PC(I)=SCALE(I)*EPX5(I)
SIGN1 (I)=SCALE(I)*SIGN1 (I)
SIGN2 (I)=SCALE(I) *SIGN2(I)
SIGN3(I)=SCALE(I)*SIGN3(I)
SIGN4 (I)=SCALE(I)*SIGN4 (I)
SIGN5 (I)=SCALE(I) *SIGNS5 (I)
60 SIGNG (I)=SCALE(I)*SIGN6(TI)
DO 70 I=LFT,LLT
70 EPX5(I)=PC(I)
80 IF (NPT.EQ.0) GO TO 100
CALL YIELDS (NPT,CM(MX+17),CM(MX+33),EPX1, AK,AKT,LFT,LLT,il)
100 DO 110 I=LFT,LLT
AJ2(I)=.5*(SIGNl(I)**2+SIGN2(I)**2+SIGN3(I)**2)+SIGN4(I)**2+SIGN5
1 (I)**2+SIGNG6(I)**2
SJ2 (I)=SQRT (3.*AJ2(I))
110 CONTINUE
do 115 i = 1£t,1l1lt
plastic(i)= .false.
if(ak(i).le.s8j32(i)) plastic(i) = .true.
115 continue

14




. CALCULATE INCREMENT IN EFFECTIVE PLASTIC STRAIN & NEW YIELD STRESS

THRG=THIRD/G

" DO 120 I=LFT,LLT

120

if(plastic(i)) then
CC(I)=DIM(SJ2(I),AK(I))/(1.E-30+DIM(1.,-THRG*AKT (I)))
CC(I)=THRG*AMIN1 (SJ2(I),CC(I))
epxt=epxl (i)+cc (i)
m=mx+il (i)+16
if(epxt.gt.cm(32)) go to 120
if(epxt.gt.cm(m) .and. epxt.le.cm(m+l)) then
~ hb=(cm(m+17) -cm(m+16) ) / (cm(m+1) —cm (m) )
cl=cm(m+16) ~ak (i) ~hb* (cm(m) —epx1 (1))
akt (i)=(3.*g*cl+hb* (sj2(i)-ak(i)))/(8j2(i)—ak (i) -cl)
cc(i)=(8j2(i)-ak (i) —cl) / (3.*g+hb)
ak (i) =max (cm(m+16) +hb* (epxl (i) +cc (i) —cm(m) ), 0.)
elseif (epxt.gt.cm(m+l)) then
write(13,1) i
call adios(2)
else
AK(I)=MAX(AK(I)+AKT(I)*CC(I),0.)
endif
else
cc(i)= 0.
endif
CONTINUE

. CALCULATE FACTOR TO SCALE STRESSES BACK TO YIELD SURFACE

130

SEPS=1.E-30*G

DO 130 I=LFT,LLT

SCALE (I)=(AK(I)+SEPS)/(MAX(AK(I),SJ2(I))+SEPS)
CONTINUE

. SCALE BACK STRESS AND INCREMENT PLASTIC STRAIN

DO 140 I=LFT,LLT

SIGN1 (I)=SCALE(I)*SIGN1(I)
SIGN2 (I)=SCALE(I)*SIGN2(I)
SIGN3 (I)=SCALE(I)*SIGN3(I)
SIGN4 (I)=SCALE(I) *SIGN4 (I)
SIGN5 (I)=SCALE (I)*SIGN5(I)
SIGNG6 (I)=SCALE(I)*SIGN6 (I)

15




Q Q Q Q

EPX1 (I)=EPX1(I)+CC(I) -
140 CONTINUE

IF (ISPALL.NE.1) RETURN
DO 150 I=LFT,LLT _
AJ2(I)=.5% (SIGN1 (I)**2+SIGN2 (I)**2+SIGN3 (I)**2)+SIGN4 (I)**2+SIGN5
1 (I)**2+SIGN6(I)**2+1.E-12
150 SJ2 (I)=SIGN1 (I)*SIGN5 (I)**2+SIGN2 (I)*SIGNG (I)**2+SIGN3 (I)*SIGN4 (I)
1 **2-STGN1 (I) *SIGN2 (I) *SIGN3 (I)-2.*SIGN4 (I)*SIGN5 (I) *SIGN6 (I)
DO 160 I=LFT,LLT
AKT (I)=-SQRT (27./AJ2(I))*SJ2(I)*0.5/AJ2 (I)
AKT (I)=SIGN (AMINI (ABS (AKT(I)),1.),AKT(I))
160 YWH(I)=ACOS (AKT (I))*THIRD
DO 170 I=LFT,LLT
170 SJ2(I)=2.*SQRT (AJ2 (I)*THIRD)*COS (YWH(I))
DO 180 I=LFT,LLT
180 DAVG(I)=PO(I)-SJ2 (I)-EPXS5 (I)
DO 190 I=LFT,LLT
190 SCALE (I)=.50*(1.+SIGN(1.,DAVG(I)))
DO 200 I=LFT,LLT
PC(I) =SCALE(I)*EPX5 (I)
SIGN1 (I)=SCALE(I)*SIGN1 (I)
SIGN2 (I)=SCALE (I)*SIGN2 (I)
SIGN3 (I)=SCALE(I)*SIGN3(I)
SIGN4 (I)=SCALE (I)*SIGN4 (I)
SIGNS5 (I)=SCALE (I)*SIGNS5 (I)
200 SIGN6 (I)=SCALE (I)*SIGN6 (I)
DO 210 I=LFT,LLT
210 EPXS5(I)=PC(I)
RETURN
1 format (¢ EXCESSIVE PLASTIC STRAIN IN ELEMENT’,il10,/)
END

SUBROUTINE YIELDS (NPT,EPS,SIGE,EPX,AK,QH,LFT,LLT, il)
Rewritten by Glenn Randers-Pehrson, BRL, 6 April 1992, to

interpolate correctly within the beginning and end segments,
to extrapolate correctly, and to run faster.

16




INTEGER NPT,LFT,LLT -
REAL EPS(16),SIGE(16) ,EPX(LLT),AK(LLT),QH(LLT)

INTEGER I,L,IL(128)
REAL SLOPE (16)

DO 10 I=LFT,LLT
IL(I)=0
IF (EPX(I) .LT.EPS(2)) IL(I)=2
IF (EPX(I) .GT.EPS (NPT-1)) IL(I)=NPT
10 CONTINUE

DO 30 L=2,NPT
DO 20 I=LFT,LLT
IF (IL(I).EQ.0.AND. (EPX(I).GE.EPS(L-1) .AND.EPX(I).LE.EPS(L)))
+ IL(I)=L
20 CONTINUE
SLOPE (L)=(SIGE(L)-SIGE(L-1)) / (EPS(L)-EPS(L-1))
30 CONTINUE

DO 40 I=LFT,LLT
QH (I)=SLOPE (IL(I))
AK(I)=SIGE(IL(I)~-1)+QH(I) * (EPX(I)-EPS(IL(I)-1))
40 CONTINUE

RETURN
END

17
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NOMENCLATURE -

=5 Y 3 P
=0y, — 05 — Hk+1(8k+1 - Ej)

shear modulus
slope determined by the straddle algorithm

= ('Ek R Ek)/('ék” - Ek); slope of yield curve for interval € to €, ,,
= (3k+2 - 61;»,1)/("31“2 - §k+l)
number of input (Em, Em) pairs

incremental change in the effective plastic strain

input values of effective plastic strain, m = 1, 2, ..., N

= E %.AsfjAsfj ; current value of effective plastic strain

current value of yield stress

input values of effective stress, m = 1, 2, -, N

= ‘ %13; 'cig ; trial value of von Mises effective stress

deviatoric components of Cauchy stress tensor

trial value
quantity calculated using original program
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